pycoral.utils
pycoral.utils.dataset
Utilities to help process a dataset.
-
pycoral.utils.dataset.
read_label_file
(file_path)¶ Reads labels from a text file and returns it as a dictionary.
This function supports label files with the following formats:
Each line contains id and description separated by colon or space. Example:
0:cat
or0 cat
.Each line contains a description only. The returned label id’s are based on the row number.
- Parameters
file_path (str) – path to the label file.
- Returns
Dict of (int, string) which maps label id to description.
pycoral.utils.edgetpu
Utilities for using the TensorFlow Lite Interpreter with Edge TPU.
-
pycoral.utils.edgetpu.
get_runtime_version
()¶ Returns the Edge TPU runtime (libedgetpu.so) version.
This runtime version is dynamically retrieved from the shared object.
- Returns
A string for the version name.
-
pycoral.utils.edgetpu.
invoke_with_bytes
()¶ Invoke the given
tflite.Interpreter
with bytes as input.- Parameters
interpreter – The
tflite:Interpreter
to invoke.input_data (bytes) – Raw bytes as input data.
-
pycoral.utils.edgetpu.
invoke_with_dmabuffer
()¶ Invoke the given
tflite.Interpreter
using a given Linux dma-buf file descriptor as an input tensor.Works only for Edge TPU models running on PCIe-based Coral devices. You can verify device support with
supports_dmabuf()
.- Parameters
interpreter – The
tflite:Interpreter
to invoke.dma_fd (int) – DMA file descriptor.
size (size_t) – DMA buffer size.
-
pycoral.utils.edgetpu.
invoke_with_membuffer
()¶ Invoke the given
tflite.Interpreter
with a pointer to a native memory allocation.Works only for Edge TPU models running on PCIe TPU devices.
- Parameters
interpreter – The
tflite:Interpreter
to invoke.buffer (intptr_t) – Pointer to memory buffer with input data.
size (size_t) – The buffer size.
-
pycoral.utils.edgetpu.
list_edge_tpus
()¶ Lists all available Edge TPU devices.
- Returns
A list of dictionary, each representing a device record of type and path.
-
pycoral.utils.edgetpu.
load_edgetpu_delegate
(options=None)¶ Loads the Edge TPU delegate with the given options.
-
pycoral.utils.edgetpu.
make_interpreter
(model_path_or_content, device=None)¶ Returns a new interpreter instance.
Interpreter is created from either model path or model content and attached to an Edge TPU device.
- Parameters
model_path_or_content (str or bytes) – str object is interpreted as model path, bytes object is interpreted as model content.
device (str) –
The type of Edge TPU device you want:
None – use any Edge TPU
”:<N>” – use N-th Edge TPU
”usb” – use any USB Edge TPU
”usb:<N>” – use N-th USB Edge TPU
”pci” – use any PCIe Edge TPU
”pci:<N>” – use N-th PCIe Edge TPU
- Returns
New
tf.lite.Interpreter
instance.
-
pycoral.utils.edgetpu.
run_inference
(interpreter, input_data)¶ Performs interpreter
invoke()
with a raw input tensor.- Parameters
interpreter – The
tf.lite.Interpreter
to invoke.input_data – A 1-D array as the input tensor. Input data must be uint8 format. Data may be
Gst.Buffer
ornumpy.ndarray
.
-
pycoral.utils.edgetpu.
supports_dmabuf
()¶ Checks whether the device supports Linux dma-buf.
- Parameters
interpreter – The
tflite:Interpreter
that’s bound to the Edge TPU you want to query.- Returns
True if the device supports DMA buffers.
API version 1.0
Is this content helpful?